Considerations about sample-size sensitivity of a family of edited nearest-neighbor rules
نویسندگان
چکیده
The edited nearest neighbor classification rules constitute a valid alternative to k-NN rules and other nonparametric classifiers. Experimental results with synthetic and real data from various domains and from different researchers and practitioners suggest that some editing algorithms (especially, the optimal ones) are very sensitive to the total number of prototypes considered. This paper investigates the possibility of modifying optimal editing to cope with a broader range of practical situations. Most previously introduced editing algorithms are presented in a unified form and their different properties (acid not just their asymptotic behavior) are intuitively analyzed. The results show the relative limits in the applicability of different editing algorithms.
منابع مشابه
Asymptotic Properties of Nearest Neighbor Rules Using Edited Data
The convergence properties of a nearest neighbor rule that uses an editing procedure to reduce the number of preclassified samples and to improve the performance of the rule are developed. Editing of the preclassified samples using the three-nearest neighbor rule followed by classification using the single-nearest neighbor rule with the remaining preclassified samples appears to produce a decis...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملA new edited k-nearest neighbor rule in the pattern classification problem
A new edited k-nearest neighbor (k}NN) rule is proposed. For every sample y in the edited reference set, all the kor (k#l)-nearest neighbors of y must be in the class to which y belongs. Here l denotes the number of samples which tie with the kth nearest neighbor of y with respect to the distance from y. The performance of the rule proposed has been investigated using three classi"cation exampl...
متن کاملApplication of Proximity Graphs to Editing Nearest Neighbor Decision Rules
Non-parametric decision rules, such as the nearest neighbor (NN) rule, are attractive because no a priori knowledge is required concerning the underlying distributions of the data. Two traditional criticisms directed at the NN-rule concern the large amounts of storage and computation involved due to the apparent necessity to store all the sample (training) data. Thus there has been considerable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 29 5 شماره
صفحات -
تاریخ انتشار 1999